Search for $K_L \rightarrow \pi^0 \mu\mu$ in 1999 Data

- Outline
 - Issues from last meeting
 - KL→π⁰μμ analysis
 - Backgrounds: KL→π⁺π⁻π⁰ MC
 - No forcing of decay or punch through Select decay/punch-thru events at generator level - MC/Data mismatch
 - KL $\rightarrow \pi^+\pi^-\pi^0$ MC No selection at generator level
 - Plans

Changes to $KL \rightarrow \pi^+\pi^-\pi^0$ MC

- Implement the following changes to my v6.00 MC
 - ✓ Use Mike Wilking's magnet swim routines
 - MC/Data shoulder is gone
 - ✓ Generate MC selecting events with 2 pion decays, 2 punch throughs or 1 punch + 1 decay at Stage 20
 - MC/Data matching is poor
 - Absolute normalization is bad
 - Problem: Missing classes of events

1999 Data/Sel K_I $\rightarrow \pi^+\pi^-\pi^0$ MC

- Fit 1999 Data with "Selected"
 K_L→π⁺π⁻π⁰ MC, where I've selected events with 2 pion decays, 2 punch throughs or 1 punch + 1 decay
 - Floated MC in fit (normalization is wrong)
 - Shoulder from bad magnetic field modelling is gone, but shape is still wrong

$K_1 \rightarrow \pi^+\pi^-\pi^0 MC$ – no selection

- What about accidental events that fire the muon banks?
 - 6 distinct classes of events
 - 1.1 Decay + Accidental
 - 2. No decay or punch-thru
 - 3.1 Punch-thru + Accidental
 - 4.1 Decay + 1 Punch-thru
 - 5.2 Decays
 - 6.2 Punch-thrus
 - Run MC with no selection
 - Let KTEVMC $K_1 \rightarrow \pi^+\pi^-\pi^0$ run normally
 - Select Trigger 5 Events $(K_L \to \pi^0 \mu^+ \mu^-, K_L \to \mu \mu \gamma \gamma)$
 - 2V * DC12 * 2MU3_LOOSE * PHVBAR1 * 2HCY_LOOSE * HCC_GE2
 - Move to the FARM (thanks to SashaG)
 - Faster, but acceptance is small (~1.6%) so it is still slow
 - Only generated ~50% of 1999 data set (this talk: ~30%)

"Non-selected" $K_L \rightarrow \pi^+\pi^-\pi^0 MC$

	Output of MC	After all cuts except pt2&Mass	After all cuts except Mass
No Decay or Punch	23%	4%	10%
1 Punch	> 1 %	> 1%	> 1%
1 Decay	49%	20%	28%
1 Punch + 1 Decay	> 1%	> 1%	> 1%
2 Decays	28%	76%	62%
2 Punch	0%	0%	0%

$K_1 \rightarrow \pi^+\pi^-\pi^0$ MC Inv Mass Distributions

- New "non-selected" K_L→π⁺π⁻π⁰
 MC has 3 major components after all cuts
 - Double Decay (62% after all cuts)
 - 1 Decay + Accidental (28% after all cuts)
 - No Decay or punch-thru (10% after all cuts)
- Inv Mass distributions for 3 major components are very different
 - Shapes more similar after pt² cut

$K_1 \rightarrow \pi^+\pi^-\pi^0$ MC Inv Mass Distributions

Distributions Before pt² Cut

Distributions After pt² Cut

1999 Data/Non-Sel K_L $\rightarrow \pi^+\pi^-\pi^0$ MC

- Fit 1999 Data with "Non-Selected"

 Κ_L→π⁺π⁻π⁰ MC, where I have not selected off events with pion decays or punch through
 - Floated MC in fit
 - I've generated ~30% of 1999 data set. Normalization from fit ~25%.
 - Additional backgrounds from kμ3
 - Slope is better

"Non-sel" v. "Sel" – high pt2

Selected: 2 decay/2 punch/1 decay+ 1 punch

Non-selected MC

"Non-sel" v. "Sel" – low pt2

Selected: 2 decay/2 punch/1 decay+ 1 punch

Non-selected MC

Current Issues

- $K_1 \rightarrow \pi^+\pi^-\pi^0 MC$
 - I've only generated ~50% of the 1999 data set.
 - I overestimated the capacity of the farm.
 - Now that I know the classes of events in final sample, I could generated MC with "forced" pion decays and fix relative normalizations.
- $K_L \rightarrow \pi \mu \nu MC$
 - I've stripped off accidentals with > 3 GeV in CsI
 - Speeds up generation by ~factor of 5
 - Possible problem: my L2 acceptances with >3GeV acc is 8.5% lower than with standard acc file
 - Start farm production with standard accidental libraries
 - Understand what is in my final sample
 - Κμ3 + decay + acc γs, kμ3 + acc μ+ acc γs

Plans

- Keep generating MC on farm "No-selection" MC
 - $K_1 \rightarrow \pi^+\pi^-\pi^0$: Do I need to skim off accidentals with muon hits?
 - K_I →πμν: I'll probably need to take short-cuts
 - Can I use the accidental library with >3GeV in CsI?
- Reduce background near box with additional cuts
 - Now that I have a relatively large MC data set, use it to study cuts
 - Extra DC hits from accidentals?
 - Neutral v. charged vertex cut?
 - Upstream/downstream track-angle cut?
 - Kinematic fit?